
Tutorial Note XII

1 Relations between Three Kinds of Convergence

There are three kinds of convergencementioned in our course: uniform convergence, pointwise

convergence, andL2 convergence. Roughly speaking, they could be listed from strong to weak:

uniform convergence, pointwise convergence, and L2 convergence. The meanings of the first

two kinds of convergence are as their names, and the meaning of the L2 convergence could be

understood as average convergence. Next we investigate their relations. First, it is easy to see

that uniform convergence implies pointwise convergence and L2 convergence. Conversely, it

does not hold. An example is as follows:

fn(x) = 1(0,1/n].

It is easy to see that fn → 0 pointwisely and in L2. However, fn do not converge uniformly to

0. For the relation between pointwise convergence and L2 convergence, real analysis provides

us the following propositions:

• (DCT) If |fn| ≤M on [0, 1] and fn → f pointwisely, then fn → f in L2;

• (Riesz) If fn → f in L2, then there is a subsequence fnk
such that fnk

→ f almost

everywhere.

But in general, they can’t imply each other. For pointwise convergence⇏ L2 convergence, an

example is as follows:

fn = n1(0,1/n2].

It is easy to see that fn → 0 pointwisely, however, ∥fn∥2 = 1 and thus fn ↛ 0 in L2. For L2

convergence⇏ pointwise convergence, an example is as follows:

f1 = 1(0,1];

f2 = 1(0,1/2], f3 = 1(1/2,1];

f4 = 1(0,1/3], f5 = 1(1/3,2/3], f6 = 1(2/3,1]

. . . .
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It is easy to see that fn → 0 in L2, however fn do not converge at any point in (0, 1].

2 Energy Estimate by Fourier Series

In this section, we derive the energy estimates by Fourier series. Consider the following IBVP:utt − uxx = 0;

u(0, t) = u(1, t) = 0.

By the method of separation of variables, we could write u as∑
n

(An cosnπt+Bn sinnπt) sinnπx.

If we allow to differentiate term by term, we have

ut =
∑
n

nπ(−An sinnπt+Bn cosnπt) sinnπx,

ux =
∑
n

nπ(An cosnπt+Bn sinnπt) cosnπx.

Then by Parseval’s identity,∫ 1

0

(u2t + u2x) =
1

2

∑
n

(nπ)2[(−An sinnπt+Bn cosnπt)
2 + (An cosnπt+Bn sinnπt)

2]

=
1

2

∑
n

(nπ)2(A2
n +B2

n).

So the energy estimate is proved by Fourier series.

3 Decay of Fourier Coefficients

In this section, we discuss decay of Fourier series. In principle, for Fourier transforms, we have

the following correspondence:

regularities←→ decay.

For Fourier series, some results are as follows:

• If f is α-Hölder continuous, f̂(n) = O(1/|n|α);

• If f is bounded monotone, f̂(n) = O(1/|n|);

• If f is continuous, f̂(n) = o(1);

• If f is Ck, f̂(n) = o(1/|n|k).
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Here we just present the proof of the third one, which is the Riemann-Lebesgue lemma. The

method we employ is the stationary phase method and density argument. In fact, we will prove

it for f ∈ L1. We begin with f ∈ C∞[0, 2π]. For

f̂(n) =
1

2π

∫ 2π

0

e−inxf(x) dx, (1)

the idea of the stationary phase method is to use

(−in)−k

(
d

dx

)k

e−inx = e−inx

to perform integration by parts. The key is that after performing integration by parts we will

obtain decay. In fact, the stationary phase method is used to deal with asymptotic problems of

oscillatory integrals like ∫
eiλφ(x)ψ(x) dx,

where φ is called the phase. If there is no stationary point of the phase, by integration by

parts, we will obtain decay. If there is a stationary point, we will need more effort to deal with

it. An intuition behind the stationary phase method is as follows: for (1), there are a lot of

cancellations hidden in e−inx, that is,∫ x0+2π/n

x0

e−inx dx = 0,

and integration by parts could make use of these cancellations. Here we only need to perform

integration by parts once, then we get

f̂(n) =

∫ 2π

0

e−inx

2πin
f ′(x) dx.

So

|f̂(n)| ≤ 1

2πn

∫ 2π

0

|f ′(x)| dx

and f̂(n) = o(1).

Next we generalize the decay to L1 by density argument. Here we use a fact that C∞[0, 2π]

is dense in L1, that is, for every function f ∈ L1 and ε > 0, there is a g ∈ C∞[0, 2π] such that∫ 2π

0

|f − g| < ε.

Moreover, we need to note that

|f̂(n)| ≤ 1

2π

∫ 2π

0

|f |.

For f ∈ L1, fix ε and take such a g. Then

|f̂(n)| ≤ |(f − g) (̂n)|+ |ĝ(n)|

≤ 1

2π

(∫ 2π

0

|f − g|
)
+ |ĝ(n)|
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≤ ε

2π
+ |ĝ(n)|.

It follows that

lim
n→∞
|f̂(n)| ≤ ε

2π
.

Let ε→ 0, then we have

lim
n→∞
|f̂(n)| = 0.
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